Injecting Combinatorial Optimization into
MCTS:
Application to the Board Game boop.

Florian Richoux

AIST, Tokyo, Japan florian@richoux.fr ORCID 0000-0003-4693-379X

Abstract. Games, including abstract board games, constitute a conve-
nient ground to create, design, and improve new AI methods. In this field,
Monte Carlo Tree Search is a popular algorithm family, aiming to build
game trees and explore them efficiently. Combinatorial Optimization, on
the other hand, aims to model and solve problems with an objective to
optimize and constraints to satisfy, and is less common in Game AI. We
believe however that both methods can be combined efficiently, by inject-
ing Combinatorial Optimization into Monte Carlo Tree Search to help
the tree search, leading to a novel combination of these two techniques.
Tested on the board game boop., our method beats 96% of the time the
Monte Carlo Tree Search algorithm baseline. We conducted an ablation
study to isolate and analyze which injections and combinations of in-
jections lead to such performances. Finally, we opposed our Al method
against human players on the Board Game Arena platform, and reached
a 373 ELO rating after 51 boop. games, with a 69% win rate and finishing
ranked 56th worldwide on the platform over 5,316 boop. players.

Keywords: Monte Carlo Tree Search, Combinatorial Optimization, Con-
straint Programming, Board Games

1 Introduction

During one of the 51 online games opposing our Al agent against a human player,
we were asked in the chat “Why researching new AI methods?” It is true that
some existing Al methods, like Deep Reinforcement Learning, would certainly
defeat any human players at this game, if properly trained.

Although the perspective of making an Al agent with a deep mastery of a
game is satisfying, this is not the reason why one does research in Game Al.
Research is driven by the quest to push the boundaries of knowledge. This can
be done by proposing something new. One way to search for new Al methods is
to try combining two existing methods that have never been combined before.

This is what this study aims to do, by combining Monte Carlo Tree Search
and Combinatorial Optimization in a way that has been never explored, to the
best of our knowledge. This paper actually proposes three possible combinations,
or to be more specific, three different injections of Combinatorial Optimization
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into Monte Carlo Tree Search, to improve performances of the latter. In particu-
lar; such combinations can be very profitable on devices with limited computing
power, where only a few random playouts can be performed.

Indeed, this research came about when we noticed that the MCTS-based Al
built into an Android app implementing the game boop. (without capital letters
and with a dot.) often played absurd moves. It turned out that with the current
app implementation in Kotlin, the number of simulated playouts was far too
low for the MCTS method to be effective: Within one second, a recent Android
device could only run about 80 playouts in average. This can be partly explained
by the dynamic of the game: Unlike Chess or Go, where playing a move does
not have a strong impact on the board state beyond removing a Chess piece
or a group of Go stones, a move in boop. often implies pushing away other
pieces on the board, due to its main “shockwave” mechanism. That makes game
simulations more complex.

This motivates the starting point of this research: injecting Combinatorial
Optimization into MCTS to circumvent the strong limitations encountered by
the MCTS method on an Android device.

2 Background

This section introduces the two combined AI techniques, Monte Carlo Tree
Search and Combinatorial Optimization, as well as boop., the board game used
as a testbed.

2.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a family of tree search algorithms relying on
the Monte Carlo method, i.e., random samplings.

Originally developed for Go [6], this type of tree search algorithm has been
applied successfully to many other board games such as Checkers, Hex and
Backgammon, as well as strategy, general and arcade video games [15, 19, 20].
MCTS has also been combined with Deep Reinforcement Learning to reach state-
of-the-art levels at Go, Chess, and Shogi [18], among other games.

MCTS aims to build a game tree of a reasonable width, even with games
implying a high branch factor like Go, by focussing on promising branches of
the tree. Its principle, depicted in Figure 1, is simple. It consists in the iteration
of 4 steps:

1. Selection, where a node in the tree is chosen following a given Tree Policy.

2. Expansion, where a new node is inserted into the tree, by applying a move
from the node previously selected.

3. Simulation, where moves are successively chosen following a Default Policy
(usually, random moves) until reaching a stop criterion (usually, the end of
the game). Such a series of moves is called a playout or a rollout. In this
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Fig. 1: Steps of the Monte Carlo Tree Search.

paper, we call this step the Playout step, allowing us to have a simple
naming convention for our different agents, as explained in Section 5.

4. Backpropagation: The state reached after the simulation is evaluated by a
function computing a reward, which is backpropagated to its parent node up
to the root. This reward will influence the Tree Policy during the Selection
step.

After reaching a timeout or a given number of iterations, the MCTS algorithm
stops and outputs the move maximizing a given criterion, such as the most visited
child of the root node, or the one with the highest reward, etc. The reader can
refer to Browne et al’s survey [3] for further information on MCTS.

In practice, the Tree Policy for Selection is often determined by computing
a Upper Confidence Bound (UCB) function [2]. Applying UCB on MCTS leads to
the Upper Confidence bounds applied to Trees (UCT) algorithm [11]. UCT is a
special case of MCTS. Although the experimental setup in Section 5 implements
ucT, our method could be applied in principle with any McTs algorithm. This
is why this paper refers to MCTS rather than UCT specifically.

2.2 Combinatorial Optimization

Combinatorial Optimization is the field aiming to model and solve problems
where one must find the optimal combination of discrete variable assignments
to maximize or minimize an objective function, while satisfying all given con-
straints. Several formalisms exist to model such problems: Linear Programming,
Answer-Set Programming, etc. In this paper, we model our Combinatorial Op-
timization problem in a Constraint Programming formalism called Constrained
Optimization Problems [14] (cop).
A cop is characterized by the quadruplet (V, D, C, f), where:

— V is the set of decision variables of the problem.

— D is the set of domains. A domain is the set of values a variable can be
assigned to.

— C is the set of constraints, forbidding some variable assignment combina-
tions.

— f is the objective function to optimize.
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There exist two families of algorithms to solve problems modeled in Con-
straint Programming: Complete and incomplete algorithms. Complete algorithms
cover the entire search space by pruning it, and can proof the optimality of a
solution. Incomplete algorithms, or meta-heuristics, rely on random moves and
heuristics to explore the search space. Although such methods cannot prove the
optimality of a solution, they are faster than complete algorithms in practice
and can tackle larger problems.

2.3 boop.

boop. is a board game created by Scott Brady and published in 2022 by Smirk
and Dagger Games. It is the commercial version of Gekitai> (Gekitai squared),
released by Scott Brady for free in 2020 on the website BoardGameGeek. Since
both games have exactly the same rules, we will refer to this game only by its
commercial name boop.

boop. is a deterministic, fully observable, 2-player game. The rules are simple:
Each player has 8 small and 8 large pieces, and starts with a pool of 8 small
pieces. Players place alternately one piece from their pool on a free square of the
6 x 6 board. When a piece is placed, it pushes away all adjacent pieces from one
square, except if a piece is blocked by another piece, like depicted in Figure 2a:
A white piece has been played in ¢3 and pushed away a black piece from b2 to
al, but did not push away the white piece in d4 because it is blocked by another
piece in eb.
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(a) Push rules 1 (b) Push rules 2 (c) Victory 1 (d) Victory 2

Large pieces can push away any other pieces, but small pieces cannot push
away large pieces (Figure 2b). When a piece is pushed out of the board, it returns
into its player’s pool.

When 3 pieces of a player are aligned, they are removed from the board at the
end of the player’s turn, and return into the player’s pool. Small pieces removed
that way are promoted to large pieces. If more than 3 pieces are aligned, the
player chooses 3 adjacent pieces to remove. If players place their 8 pieces on the
board, they can choose one piece to remove from the board. In case this piece is
a small one, it is promoted to a large piece.
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A player wins the game if he or she has 3 large pieces aligned at the end of
his or her turn (Figure 2c), or if 8 large pieces are placed on the board at the
end of the player’s turn (Figure 2d). There are no tied games in boop.

3 Related work

Many studies have explored the combination of MCTS and Combinatorial Op-
timization, and more specifically Constraint Programming, but always from a
different perspective than ours.

To solve a special case of the Travelling Salesman Problem encountered in
the automotive industry, Antuori et al. [1] combine MCTS and Combinatorial
Optimization to improve Combinatorial Optimization solvers by applying MCTS
techniques to balance exploration and exploitation of the optimization problem
search space. This is a fundamental difference with our work: Where we use
Combinatorial Optimization to improve an MCTS method, Antuori et al. use
MCTS to improve a Combinatorial Optimization method. A common point is
that they replace MCTS playouts with a Deep-First Search method, when we
replace them by a series of Combinatorial Optimization problem resolutions,
one for each move in the simulation.

In the same manner, the Bandit Search for Constraint Programming (BASCOP)
algorithm from Loth et al [13] aims to adapt MCTS to the characteristics of a
Constraint Programming search tree. Again, the goal here is to use MCTS to
improve the search for a combinatorial problem. Specifically, they designed the
MCTS reward function to estimate to each couple (variable, value) a failure score,
called relative failure depth, then exploited by the solver: Their algorithm guides
the Constraint Programming search in the neighborhood of the previous best
solution, by exploiting this relative failure depth estimated during the search
space exploration.

Goffinet and Ramanujan use MCTS to solve the Maximum Satisfiability Prob-
lem (a.k.a. MaxSAT) [8], to balance exploration and exploitation during the
search of a SAT solver. They propose the UCTMAXSAT algorithm, where each
node in the tree is associated to a variable in the SAT formula, with two pos-
sible decisions corresponding to the variable evaluation. Playouts and leaf node
evaluations are done by two SAT stochastic local search algorithm runs, one
starting by evaluating the expended node by true, the other one by false.

Finally, we can also mention Sabharwa et al’s work to guide Combinatorial
Optimization in Mixed Integer Programming with McTs [17].

To the best of our knowledge, all works combining Combinatorial Optimiza-
tion and MCTS methods, like the related works presented above, aim to take
advantage of the MCTS capacity to handle the exploration-exploitation dilemma
to help Combinatorial Optimization solvers exploring their search space. From
that perspective, the work proposed in this paper differs radically from these pre-
vious works, combining two methods the other way around, i.e., exploiting Com-
binatorial Optimization capacities to find optimal solutions under constraints to
improve a Monte Carlo Tree Search.
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One can also find many Game Al works combining MCTS with heuristics
to improve the MCTS method. These works include using heuristics to bias the
Tree Policy by replacing or extending the usual UCB function by some heuris-
tics for selection [4,9], or using heuristics to bias the Default Policy by guiding
playouts [7,12]. Swiechowski et al. wrote a good survey about recent MCTS mod-
ifications and applications [21]. Our method differs from these works in two
aspects:

1. It does not simply use a heuristics, but solve a Combinatorial Optimization
problem to bias both the Tree and Default Policies, with the advantages
explained in the next paragraph.

2. The Tree Policy is biased without modifying nor replacing the UCB function.
Instead, Combinatorial Optimization is used to narrow the number of nodes
that can be randomly drawn during the Selection step.

One can notice that the objective function and the constraints of the Combi-
natorial Optimization model could actually be combined into a unique heuristics
by replacing constraints with penalty functions. However, there are three main
advantages to bias the Tree and Default Policies by modeling and solving a
Combinatorial Optimization problem rather than simply using a heuristics:

1. The heuristics output would not allow to mathematically certify that all
constraints are satisfied, unlike solving a COP.

2. Expressing the bias as a cop allows us to take advantage of solvers con-
taining specific mechanisms to exploit the problem structure induced by
the constraint network, both with complete solvers (filtering and constraint
propagation) and meta-heuristics (constraint-based local search).

3. While using a heuristics, one needs to call it on every possible move. How-
ever, constraint solvers do not explore the entire move space: For instance,
complete solvers prune the problem search space to avoid visiting subspaces
where they determined that solutions are infeasible or suboptimal. Although
this feature does not have a strong impact for boop., since the move space of
the game is small, this could be very useful for other games and applications
with significantly larger move or action spaces.

4 Mixing mcts and Combinatorial Optimization

Before describing the Combinatorial Optimization problem, we explain at the
beginning of this section how do we combine Combinatorial Optimization and
MCTS methods. Then, we give the intuitive idea of the Combinatorial Optimiza-
tion model in Subsection 4.1, followed by its model and some design choices.
Random playouts are a powerful mechanism within McTS. However, to have
a good estimation of the current game state and the value of its possible moves,
one must run a significant number of playouts. This is not always easy to do,
depending on the hardware: We implemented a vanilla MCTS method within a
boop. Android app but quickly realized that the number of playouts we could
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run on our Android device within a reasonable time was too small to be reliable.
Within one second, the device could only run about 80 playouts in average.

This issue can be tackled by replacing playouts with moves that are selected
by solving the Combinatorial Optimization problem described in the next Sub-
section 4.1. Algorithm 1 illustrates how it works. Each move of the playout is
randomly drawn among the moves maximizing the Combinatorial Optimization
problem (Line 4). After being drawn, a move is simulated to get a new game
state (Lines 5 and 6), and an associated reward is computed regarding if the
move leads to a terminal game state (Line 8) or not (Line 10). This is repeated
until a terminal state is reached or after & moves (while loop at Line 3). Then,
the playout stops and returns the cumulative, normalized reward (Line 12). The
value of k£ we choose in practice is discussed in Subsection 4.1. The playout re-
ward is estimated by computing a discounted sum of the normalized scores of
the successive k& moves, divided by k. Scores are simply the objective function
output of the Combinatorial Optimization model and are normalized within the
range [—1,1], such that -1 is the score of a loss and 1 the score of a victory.
The discount factor is a parameter d we discuss in Subsection 4.1. We denote
by a = (p,r,c) the move placing a piece of type p on the board at row r and
column c. Let aq,...,ar be the k moves played during a playout. Its playout
reward R is estimated by Equation 1

R =

T =

k
Zdi-f(az‘) (1)

where f is the objective function of the Combinatorial Optimization model.
Notice that in Algorithm 1, the Reward function on Line 10 corresponds to
computing d’.f(a;). Since the image of f is [—1,1], the discount factor is such
that d < 1 holds, and the sum of the k products is divided by k, we have R €
[—1, 1]. The playout reward is thus not necessarily 0/1 or —1/1. This is perfectly
acceptable for the UCB function, like described in Kocsis and Szepesvari’s paper
introducing the ucT algorithm: We are here dealing with a P-game tree, that
is, “a minimax tree that is meant to model games where at the end of the game
the winner is decided by a global evaluation of the board position where some
counting method is employed” [11], instead of the classic win/loss evaluation.
We also inject the same Combinatorial Optimization problem into the MCTS
process to bias the Selection and Expansion steps, as illustrated by Algorithm 2.
For the Selection step, the solver is called to pre-select the m best moves re-
garding the current game state (Line 1). In other words, it selects m nodes
among the root’s children. Unselected children are masked (Line 2), to prevent
the UCB function considering them, forcing to select one of the preselected chil-
dren (Line 4). This is analogical to invalid action masking in Reinforcement
Learning [10], where invalid or poor actions/decisions are masked mostly at the
beginning of the learning process, to avoid confused and chaotic situations that
are usual during the first iterations, thus shortening the learning. For the Expan-
sion step, the Combinatorial Optimization solver is simply called to find what
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Algorithm 1: PLAYouT

Input: A node, an integer k and a game state gs
Output: The normalized playout score

1 iterations < 0

2 score < 0

3 while node is not terminal and iterations < k do
// Combinatorial Optimization injection for Playout

a best_ move +— Random(Solver(gs))

5 node < Simulate_move(best__move)

6 gs < Update(gs, node)

7 if node is terminal then

8 L score «— score + Terminal score(node)

9 else

10 L score < score + Reward(node, iterations)
11 iterations < iterations + 1

12 return score / iterations

Algorithm 2: ENHANCED MCTS

Input: A game state gs and a root node
Output: One of the best estimated moves
// Combinatorial Optimization injection for Selection
1 preselected__moves < Solver(gs)
2 unselected mask < Childs(root) \ preselected moves
while timeout unreached do
// Select a node in the tree
selected <— UCT (unselected mask)
gs < Update(gs, selected)
if selected is terminal then
selected.visits <— selected.visits + 1
Backprop(selected.parent, selected.score)
continue

10 masked_ childs < Childs(selected)

// Combinatorial Optimization injection for Expansion
11 expanded + Random(Solver(gs, masked_ childs))

12 gs < Update(gs, expanded)

[

© N O os

13 expanded.parent < selected

14 if expanded is not terminal then

15 L expanded.score < Playout(expanded, 20, gs)
16 else

17 L expanded.score < Terminal _score(expanded)
18 Backprop(selected, expanded.score)

19 best_moves « Best_ratio(preselected__moves)
20 return Random(best_moves)
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are the best moves to play, regarding the current game state and excluding the
moves that have been already explored (Line 11).

Finally, we set a timeout of 1 second to let our method build and explore the
game tree before outputting a move to play. The set of moves with the highest
score/visits ratio is computed (Line 19) and the algorithm returns one move
randomly drawn from this set, following a uniform distribution (Line 20).

In summary, our method injects Combinatorial Optimization into 3 steps
of McTs: Just before the Selection step (Algorithm 2, Line 1) and during the
Expansion step (Algorithm 2, Line 11), to bias to Tree Policy, and during the
Playout step, replacing playouts by successive Combinatorial Optimization prob-
lem resolutions (Algorithm 1, Line 4), redefining a Default Policy. Despite these
modifications, the resulting tree search algorithm is still an MCTS algorithm be-
cause all 4 steps are applied, and there are still some randomness in the Playout
step: If the Combinatorial Optimization solver finds several optimal solutions,
i.e., different moves of the same quality according to the objective function, then
one of these moves is randomly selected, following a uniform distribution (Algo-
rithm 1, Line 4, and Algorithm 2, Line 11). Such a situation occurs often in a
game: We ran 10 games specifically to evaluate this, and measured it occurs in
average 21,352 times per agent and per game.

It is worth noticing that the method presented in this paper focuses on the
“move decision-making” in boop., i.e., placing a piece on the board. There is
actually a second type of decision players must take in a boop. game: In some
occasions, a player has the choice of which pieces to promote. In this work,
we handle this decision via a simple heuristics favoring taking pieces on the
border of the board. All agents presented in Section 5 share this heuristics about
“promotion decision-making”.

4.1 The Combinatorial Optimization model

Before proposing a model of the tackled Combinatorial Optimization problem,
we first give the intuition behind it. For node pre-selections, expansions, and
playouts, the same Combinatorial Optimization problem is solved: Finding a
move maximizing the game state score, determined by a given heuristics com-
puted by the objective function, such that the following constraints are satisfied:
1. The piece we play belongs to our pool, 2. Its position is a free square on the
board, and 3. The combination (piece type, position) is not a masked move. The
two first constraints certify that the move is valid, the last one forces finding a
move that does not belong to the set of masked ones. This is necessary for the
node pre-selection, where all nodes but m are masked, but also for the expansion,
to assure we won’t regenerate an existing node.
The following model describes the problem presented above:

Variables: V' = {v,,v,,v.}, with v, the variable deciding the type of piece to
play for the move, and v,., v. the variables about the row and column number of
the move position.
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Domains: D = {Dyjece, Dposition }s Where Dyjece = {small,large} is the do-
main of v, and Dposition = {1,...,6} the domain of v, and v,.
Constraints: C = {HasPiece(v,), FreePosition(v,, v.),
Unmasked(vy, vy, ve)}. We formally describe these constraints latter in the sec-
tion.
Objective function: f(v,,v,,v.) is a heuristics assigning a score to the game
state after simulating the move (v, v,, v.). The exact heuristics function formula
is rather long and not easy to display clearly in a paper. To describe it concisely,
it attributes a score based on the difference between the two players of the num-
ber of pieces on the board, on the center and on the border, the difference of
large pieces possessed, and if two or three pieces are aligned. This last part of
the score differs regarding the type of pieces composing the alignment. The sum
of all these is a number in the range [[MAX, MAX]. We divide it by MAX to
normalize the outputted score in [-1,1].

The code of the heuristics function can be found in the function HEURIS-
TIC STATE in the source code®*.

The three constraints of the model can be formally described as follows:

HasPicce(v,) true  if v, € player pool
asPiece(v,) =
b false otherwise

" true  if (vy,v.) € free_squares
FreePosttion(vr, vc) = {false ot]fle;;vics)e -

true  if (vp, vy, v.) ¢ mask
Unmasked(vp, vr, ve) = {false othez;wise

To be valid, a variable assignment must be such that all constraints output
true.

The model contains three parameters, already introduced at the beginning
of this section: The number k of moves computed during playouts, the number
m of pre-selected nodes and the discount factor d. We did not make an extensive
parameter tuning for this study and set their value after some very brief trials.
An extensive parameter tuning could probably improve the global performance
of our method. This is let as future work. We set £ = 20, m = 5 and d = 0.9.

The C++ framework GHOST [16] has been used to model and solve the Com-
binatorial Optimization problem. It mainly contains a local search solver imple-
menting the Adaptive Search algorithm [5], but also a backtrack-less, complete
solver, designed to find all solutions of the input problem. Since we need to find
all possible moves given the current game state, we used this complete solver.

We can now introduce our experimental setup and results. Two types of
experiments have been performed: 1. Section 5 compares our method with two
baselines and with variations of our method, running AI versus Al games. 2.

*github.com/richoux/pobo/blob/0.6.2/app/src/main/cpp/heuristics.cpp
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Even if our goal is not to make the best Al agent playing boop., we wanted
to evaluate its level against human players. To do so, we played the Al agent
against 28 human players in 51 games on the platform Board Game Arenaf. This
is detailed in Section 6.

5 Al versus Al experiments

The goal of this work is to improve MCTS methods by injecting Combinatorial
Optimization techniques. A plain, vanilla MCTS method is therefore a natu-
ral baseline. Comparing the Combinatorial Optimization-enhanced MCTS with
a vanilla MCTS is easy: We just have to disable all Combinatorial Optimization
solver calls in the enhanced MCTS to get a vanilla MCTS implementation. Thus,
Selection is done considering all children of the root node, and Expansion and
Playout are done randomly. We did not give our method a specific name, so we
refer to it by MCTS-CO in this section.

This section also compares MCTS-CO with an agent choosing its next move
by only calling the heuristics function used in our objective function. This con-
stitutes the second baseline, to test if all improvements reached by MCTS-CO
come from the heuristics only, or if it should be attributed to the combination
of McTs and Combinatorial Optimization.

Finally, an ablation study is performed by comparing MCTS-CO with itself
when Combinatorial Optimization is enabled or disabled for the Selection, the
Expansion and the Playout steps. We denote agents implementing these modifi-
cations by MCTS + the first letter of the concerned steps. For instance, MCTS+SP
is the MCTS agent injecting Combinatorial Optimization in the Selection and
Playout steps. The reader can observe that the agent MCTS-CO corresponds thus
to the agent MCTS+SEP.

5.1 Experimental setup and results

We set a timeout of 1 second for all agents to choose its next move, except for
the heuristics agent who does not need any timeout because it does not apply
an iterative process: It calls its heuristics function once on each possible move
and keeps the move with the highest score, or randomly draws one move among
the ones with the highest score.

All experiments have been done through a boop. Android app we devel-
oped?, running an Android virtual device on Linux, thus simulating the lim-
ited resources of an Android phone compared to a computer. The source code
of the Android app, the experimental setup and the results can be found at
github.com /richoux/pobo/tree/0.6.2.

Table 1 compiles results of 100 games of our MCTS-CO agent against the
vanilla MCTS agent, all combinations of Combinatorial Optimization-enhanced

Thttps://boardgamearena.com
iplay.google.com /store/apps/details?id=fr.richoux.pobo
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Table 1: Number of victories of our MCTS-CO agent versus other agents.

MCTS-CO’s opponent|MCTS-CO P1|MCTS-cO P2|win rate
Vanilla MCTS 47 49 96%
Heuristics 30 50 80%
MCTS+S 31 46 %
MCTS+E 40 49 89%
MCTS+P 49 50 99%
MCTS+SE 24 42 66%
MCTS+SP 35 50 85%
mcTs+EP 14 50 64%
400
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0
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Fig. 3: ELO rating of MCTS-CO on Board Game Arena against human players.

MCTS agents, and the heuristics agent. The MCTS-CO agent played half of these
games as the first player P1, and the other half as the second player P2.

We see that MCTS-CO wins 96 games against the vanilla MCTS, over 100
games, showing that injecting Combinatorial Optimization into MCTS leads to
very significant improvements. One could argue that these improvements could
be obtained with the crafted heuristics function alone, used in the objective
function of our Combinatorial Optimization model. This is not the case how-
ever, since MCTS-CO also beats 80 times over 100 games the heuristics agent, our
second baseline. This shows that the gain of performances comes from the combi-
nation of MCTS and Combinatorial Optimization, rather than just the heuristics
function alone.

Games against different combinations of Combinatorial Optimization-enhanced
MCTS agents allow us to estimate which parts of our methods contribute the most
to its improvements. First, one can observe that MCTS-CO significantly outper-
forms all other Combinatorial Optimization-enhanced MCTS agents. Taken sep-
arately, each Combinatorial Optimization injection in the Selection, the Expan-
sion and the Playout step does not bring much compared to the vanilla MCTS
agent, with eventually the exception of the MCTS+S agent. It is interesting to
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observe that, despite being not efficient alone, the Combinatorial Optimization-
enhanced Expansion step is a key element while combined with either a Com-
binatorial Optimization injection in the Selection or the Playout step, as illus-
trated by the win rate difference of MCTS-CO versus MCTS+SE/EP, and versus
MCTS+SP. We can see that injecting Combinatorial Optimization in the Ex-
pansion step both greatly keeps up the improvements initiated by MCTS+S,
but is also crucial for the Combinatorial Optimization-enhanced Playout step in
MCTS+P: Although MCTS+P shows the poorest results among all Combinato-
rial Optimization-enhanced MCTS agents, MCTS+EP reveals itself to be the best
one. We argue that the good synergy between the enhanced Expansion and the
enhanced Selection, and in particular between the enhanced Expansion and the
enhanced Playout, explains the excellent performance of MCTS-CO against our
two baseline agents.

6 Al versus Human experiment

To have a first estimation of the MCTS-CO agent’s level against human players, we
ask the permission to the Board Game Arena platform for creating an account
specifically for this agentS.

We deployed the following process: After making an announcement on the
Board Game Arena forum about our Al agent account, as the Board Game Arena
platform recommended us to do, we created boop. games from this account and
waited for someone to join. We never joined games created by other players. At
the beginning of the game, we used the chat to warn the opponent that he or she
is playing against an Al, telling that it is possible to cancel the game without
any penalties if he or she is not comfortable with that. Therefore, all opponents
were warned they were playing against an Al agent, and all games taken into
account for the experiment are games where the opponent agrees to play against
the AL To ensure this, games have been done “manually”: We played from the
AT agent account on a computer next to an Android tablet running the boop.
app implementing MCTS-CO. Then, we reproduced each move from the Board
Game Arena opponent on the Android tablet as a human player, and played on
Board Game Arena each move decided by the MCTS-CO agent in the app. This
way, we acted as a human operator reproducing moves from Board Game Arena
to the Android app and from the Android app to Board Game Arena, answering
to eventual questions from opponents on Board Game Arena.

Board Game Arena is implementing its own ELO rating, which should not
be directly compared to Chess ELO rating. Board Game Arena attributes a rank
to players according to their ELO rating: Beginner (0 ELO points), Apprentice
(1-99), Average (100-199), Good (200-299), Strong (300-499), Expert (500-699),
and Master (700+). At the time this experiment was conducted, there were 6
boop. Master players only on the platform, over 5,316 boop. players.

Our agent played 51 games against 28 players with ELO points from 0 to 865,
between 13 December, 2023 and 10 January, 2024. It won 35 games (69% of win

Shttps://boardgamearena.com /player?id=95213950
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rate), and finished with 373 ELO points (Strong rank), ranked 56th worldwide on
the platform. It reached the Strong rank after its 28th game. Figure 3 illustrates
the progression of our agent’s ELO points. Although its ELO points evolution
looks rapid at first glance, it should not be directly compared with the evolutions
of human players on Board Game Arena, since many players are likely to discover
the game on this platform and then start from a completely beginner level, when
our agent played its first games at full strength.

Considering Figure 3, one could think that the agent reached its top perfor-
mances against humans players, since the ELO points curve seems to converge
just below 400 points. We do not think it is the case, though, and believe that
it could go further, even maybe reaching the bar of 500 ELO points. The three
last games were played against its strongest opponent, a Master player with a
865 ELO rating, ranked 3rd worldwide at that time. Our agent lost these three
games and that is what makes the curve flat at the end.

7 Conclusion and perspectives

We presented in this paper three different injections of Combinatorial Optimiza-
tion into Monte Carlo Tree Search (MCTS): Just before the Selection step, during
the Expansion step, and during the Playout step. While previous works combine
MCTS with Combinatorial Optimization solvers to improve them, this is the first
time Combinatorial Optimization has been combined with MCTS to improve the
latter, to the best of our knowledge. Experimental results show that a Combi-
natorial Optimization-enhanced MCTS algorithm greatly outperforms the vanilla
MCTS algorithm: In the board game boop., our methods wins 96% of its games
against vanilla MCTS, and 80% of its games against an heuristics-based agent, the
second baseline, on a virtual device simulating the limited computing resources
an Android device may offer, compared to a personal computer. We also did an
ablation study allowing us to analyze which Combinatorial Optimization injec-
tions are essentials for reaching these performances. From this ablation study,
we conclude that injecting Combinatorial Optimization into the Expansion Step
is the key stone of our method, performing poorly alone but extremely well while
combined with both a Combinatorial Optimization injection into the Selection
and the Playout steps.

In parallel of Al versus Al experiments, we also ask the opportunity to the
Board Game Arena platform to let our AI agent plays boop. against human
players, allowing us to have a rough estimation of its ELO rating. Our agent
plays 51 games against 28 opponents of very different skills, winning 69% of its
games (35 wins, 16 losses), finishing with a 373 ELO rating (“Strong player”)
and ranked 56th worldwide on the platform over 5,316 boop. players.

Apart from trivial improvements we could bring to our method and its im-
plementation, such as the tuning of its 3 parameters, an interesting perspective
could be modeling and solving a Combinatorial Optimization problem going be-
yond one-stage decision-making: So far, the Combinatorial Optimization prob-
lem we solve aims to find the best move in the current situation, and the combi-
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natorial part of this problem is certainly under-exploited for the solver we use.
Tackling k-stage decision-makings, i.e., deciding the move after considering k-1
successive moves, would constitute a great challenge from a combinatorial point
of view, for instance by certifying that the opponent does not have any direct
winning moves next after our move (unless all our moves are losing moves).
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