Comparing the Performance of Learned and Handmade one-hot QUBO Models
for Quantum Annealing

Florian Richoux'?, Jean-Francois Baffier>, Philippe Codogne

t3’4’5

LAIST, Tokyo, Japan
211J Research Lab, Tokyo, Japan
3JFLI, CNRS, Tokyo, Japan
4Sorbonne University, Paris, France

University of Tokyo, Tokyo, Japan
florian @richoux.fr, jf@baffier.fr, codognet@1is.s.u-tokyo.ac.jp

Abstract

Our aim is to facilitate the formulation and solving
of constrained optimization problems in QUBO for
quantum annealing. We defined in previous work a
framework for automatically generating the QUBO
penalties from various types of constraints, and we
present in this paper a performance evaluation of
this learning process by comparing the runtime per-
formance of the learned QUBO programs with re-
spect to the runtime performance of a handmade
QUBO formulation. We perform this comparison
for two well-known constrained optimization prob-
lems: the Travelling Salesman Problem (TSP) and
the Quadratic Assignment Problem (QAP).

1 Introduction

The use of Quantum Annealing [Kadowaki and Nishimori,
1998; Farhi ef al., 2001] for solving combinatorial problems
has raised a growing interest in the last years [Yarkoni et al.,
2022; Mohseni et al., 2022], thanks to the development of
quantum computers such as D-Wave systems [Bunyk er al.,
2014] and quantum-inspired systems such as Fujitsu Digital
Annealing Unit [Aramon et al., 2019]. These systems are
based on the modeling of problems in QUBO (Quadratic Un-
constrained Binary Optimization), which is equivalent to the
Ising model [Lucas, 2014; Glover et al., 2019].

A QUBO problem is defined by a vector of N binary de-
cision variables x1,---,xy and a quadratic function over
T1, -+ ,xn to be minimized, of the form: ZKJ. Qi T T
Therefore, a QUBO problem can be reduced to an upper trian-
gular N x N square matrix () with coefficients g¢;;.

While constrained optimization problems are expressed
with integer decision variables subject to a set of constraints,
QUBO is based on Boolean decision variables and has no con-
straints. Thus, in QUBO, one has first to select an encod-
ing scheme to represent integers as Booleans and, second, to
transform the constraints into penalties that are added to the
objective function to minimize. The key idea is that a penalty
will have its minimal value when the constraint is satisfied,
leading thus to feasible solutions (solutions satisfying all con-
straints) for the optimization problem.

In the quantum annealing literature, the usual way to en-
code integers into Booleans is the one-hot encoding: an in-
teger variable x € {1,...,k} is represented by k Boolean
variables x; that have value 1 if the original variable x has
value ¢ and value O otherwise. We developed in previous
work [Richoux et al., 2023] an approach based on the one-hot
encoding of integers for automatically generating a quadratic
penalty (suitable for QUBO modeling) corresponding to a con-
straint between integer variables. This approach is general
and based on the learning of (a limited number of) posi-
tive and negative candidates for the constraint satisfaction;
it works for any type of constraint: linear constraints, non-
linear constraints (such as the all-different or permutation
constraint), etc.

Although this approach greatly helps in the formulation of
the QUBO models, one question which is left open is to know
if the QUBO models automatically generated by our approach
have performance that similar to handmade QUBO models
or not. We would like in this paper to answer this question
by comparing the performance of the learned QUBO models
with respect to the runtime performance of handmade QUBO
formulations for two well-known constrained optimization
problems: the Travelling Salesman Problem (TSP) and the
Quadratic Assignment Problem (QAP).

2 Methodology

Converting a classic model to a QUBO model requires finding
a (). matrix representation of each constraint in the original
model, so that the global () matrix representing the QUBO
model of the problem would simply be the sum of each Q.
matrices with the matrix expressing the objective function.
In [Richoux et al., 2023], we convert each constraint ¢ by
learning (). matrix from data as a pattern composition over a
one-hot encoding. The training data is derived from a specific
instance of ¢, where ¢ defines a constraint over a fixed number
of variables with values from domains of fixed size.

Let ¢ be a constraint and ¢ one of its possible instances.
A candidate for ¢ refers to an assignment of all variables
within «. Let Cand(:) be the set of all candidates of the
constraint instance ¢. A candidate is deemed positive if it
satisfies ¢ and negative otherwise. Let S = {(z,y) | = €
Cand(t),y € {0,1}} be the set of all possible pairs (x,y),

such that:

if z is a positive candidate
if x is a negative candidate.

1

Y=o

The goal of our method is, given some positive and nega-

tive candidates in Cand(:) provided by users, to find a pat-

tern composition representing a (). matrix corresponding to
¢, such that the following property holds:

¥(z,y) € S, 27 Q. is minimal iff y = 1 (1)

Since we deal with discrete constraints, (). can comprise
only integers. For a constraint with a scope of n variables z;
in a k-ary domain, Q. is an upper triangular matrix of size
nk x nk. Our approach involves learning a proper combi-
nation of submatrix patterns. Two types of submatrices are
considered: k x k square submatrices, expressing properties
between two decision variables x; and x; (with 7 # j), and
k x k triangle submatrices, expressing properties of 22 for all
ie{l,n}.

We have defined 15 square and 3 triangle submatrix pat-
terns over one-hot encoding. To compose a (). matrix, sub-
matrix patterns are combined by summing their elements.
Some square submatrix patterns are mutually exclusive; for
example, enforcing both x; = z; and x; # z; simultane-
ously is nonsensical. Submatrices and patterns exclusively
pertain to binary variables. Our method learns from data a
pattern composition representing (. within one second.

3 Performance Comparison

We compared the performance of learned and handmade
QUBO penalties on two well-known Constrained Optimiza-
tion Problems: the Quadratic Assignment Problem (QAP) and
the Traveling Salesman problem (TSP). The classical for-
mulation of these problems as permutation problems on in-
tegers {1,...,k} consists in an objective function to mini-
mize ("length of “tour” for TSP and “flow of items between
facilities” for QAP) and a permutation constraint. We will
therefore compare the runtime performance of a QUBO model
with a learned penalty for the permutation constraint with re-
spect to a handmade QUBO model with a two-way one-hot
permutation constraint [Glover et al., 2019; Matsubara et al.,
2020]. We benchmark these two QUBO formulations on in-
stances from QAPLIB'! and TSPLIB2.

Quantum annealing computers such as D-Wave are lim-
ited in terms of qubits and connections between qubits and
cannot solve on the QPU the instances from QAPLIB and
TSPLIB. Therefore, we used a quantum-inspired / digital an-
nealing system: Fixstars Amplify Annealing Engine, a dig-
ital annealer running on a cluster of NVIDIA V100 GPUs
(Graphics Processing Units), with a basic capacity of 65,536
Boolean variables connected by a complete graph.

Table 1 shows the results for QAP. We list, for each in-
stance, the instance name, the value of the optimal solution,
the best value obtained by the model, the average Time-To-
Solution (TTS) over 10 runs if the solver always reaches the

!coral.ise.lehigh.edu/data-sets/qaplib/
2comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Table 1: Comparison on QAP

Instance || Handmade model (one-hot) || Learned model (one-hot)
name | opt. || best | TTS/ARPD || best | TTS/ARPD
roul2 235528 235528 0.214 235528 0.324
rou20 725522 726988 2.02% 726100 0.79 %
had12 1652 1652 0.321 1652 0.363
had20 6922 6922 26.26 6922 18.63
nugl2 578 578 0.098 578 0.106
nug20 2570 2570 28.38 2570 26.47
scrl2 31410 31410 0.077 31410 0.121
chrl2a 9552 9552 0.057 9552 0.056
chr12b 9742 9742 0.179 9742 0.116
chr20a 2192 2192 0.501 2192 1.947
chr20b 2298 2298 0.637 2298 1.534
bur26a 5426670 5638085 3.90% 5630010 3.75%
bur26b 3817852 4010070 5.03% 3996400 4.68%
escl6a 68 68 0.063 68 0.063
escl6b 292 292 0.062 292 0.062
esc32a 130 130 1.798 130 26.41
esc32b 168 168 0.183 168 0.801
tail7a 491812 492182 0.08 % 492819 0.20%
tai20a 703482 710359 0.98 % 712409 1.27%
tai30a 1818146 1870453 2.88% 1878280 3.31%
tai40a 3139370 3262846 3.92% 3251990 3.59%
tho30 149936 151310 0.92% 151383 0.96%
tho40 240516 246214 2.37% 246967 2.68%
wil50 48816 49541 1.49% 49284 0.96 %

Table 2: Comparison on TSP

Instance ‘ ‘ Handmade model (one-hot) ‘ ‘ Learned model (one-hot)
name | opt. || best | TTS/ARPD || best | TTS/ARPD
ulysses16 6859 6859 0.312 6859 0.468
erl7 2085 2085 0.262 2085 0.228
ard8 5046 5055 0.08 % 5055 0.08 %
fri26 937 937 2.594 937 5.094
att48 10628 10691 0.59 % 10708 0.75%
hk48 11461 11480 1.65% 11521 0.52%
eil51 426 431 1.17% 433 1.64%
berlin52 7542 7739 2.61% 7833 3.86%

optimal solution within the timeout (1 minute) or the Aver-
age Relative Percentage Deviation (ARPD) w.r.t. the optimal
value if this is not the case, for both the model with handmade
and with learned permutation constraint. The performance
for both models are very similar, except maybe in a very few
cases (esc32a, and esc32b to a lesser extent).

Table 2 shows the same results for the TSP. Performance
of both models are similar, with a slight advantage sometimes
to the handmade model and sometimes to the learned model.

Looking directly at the QUBO matrices, the models with
handmade permutation constraint and the models with the
learned permutation constraint are quite different, thus it was
not clear a priori that the runtimes would be similar.

4 Conclusion

We compared the performance of learned QUBO models and
handmade QUBO models, with one-hot encoding for integers,
on two classical constrained optimization problems: TSP and
QAP. Experiments on a quantum-inspired annealer show that
both models have very similar performances. This shows that
the use of QUBO penalties derived automatically by learning
are a viable approach in order to simplify the design of QUBO
models for quantum annealing.

https://coral.ise.lehigh.edu/data-sets/qaplib/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

References

[Aramon et al., 2019] Maliheh Aramon, Gili Rosenberg,
Elisabetta Valiante, Toshiyuki Miyazawa, Hirotaka
Tamura, and Helmut G. Katzgraber. Physics-inspired op-
timization for quadratic unconstrained problems using a
digital annealer. Frontiers in Physics, 7:48, 2019.

[Bunyk er al., 2014] Paul 1. Bunyk, Emile M. Hoskinson,
Mark W. Johnson, Elena Tolkacheva, Fabio Altomare, An-
drew J. Berkley, Richard Harris, Jeremy P. Hilton, Trevor
Lanting, Anthony J. Przybysz, and Jed Whittaker. Archi-
tectural considerations in the design of a superconducting
quantum annealing processor. IEEE Transactions on Ap-
plied Superconductivity, 24(4):1-10, 2014.

[Farhi er al., 2001] Edward Farhi, Jeffrey Goldstone, Sam
Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel
Preda. A quantum adiabatic evolution algorithm applied

to random instances of an np-complete problem. Science,
292(5516):472-475, 2001.

[Glover et al., 2019] Fred W. Glover, Gary A. Kochenberger,
and Yu Du. Quantum bridge analytics I: a tutorial on for-
mulating and using QUBO models. 4OR, 17(4):335-371,
2019.

[Kadowaki and Nishimori, 1998] Tadashi Kadowaki and
Hidetoshi Nishimori. Quantum annealing in the transverse
Ising model. Phys. Rev. E, 58:5355-5363, 1998.

[Lucas, 2014] Andrew Lucas. Ising formulations of many
NP problems. Frontiers in Physics, 2, 2014.

[Matsubara ez al., 2020] Satoshi =~ Matsubara, Motomu
Takatsu, Toshiyuki Miyazawa, Takayuki Shibasaki,
Yasuhiro Watanabe, Kazuya Takemoto, and Hirotaka
Tamura. Digital annealer for high-speed solving of
combinatorial optimization problems and its applications.
In 25th Asia and South Pacific Design Automation Conf.,
pages 667-672, 2020.

[Mohseni et al., 2022] Naeimeh Mohseni, Peter L. McMa-
hon, and Tim Byrnes. Ising machines as hardware solvers
of combinatorial optimization problems. Nature Rev.
Phys., 4(6):363-379, 2022.

[Richoux et al., 2023] Florian Richoux, Jean-Francois
Baffier, and Philippe Codognet. Learning QUBO models
for quantum annealing: A constraint-based approach.
In Proceedings of the 2023 International Conference on
Computational Science (ICCS), pages 153—-167. Springer
LNCS, 2023.

[Yarkoni et al., 2022] Sheir Yarkoni, Elena Raponi, Thomas
Béck, and Sebastian Schmitt. Quantum annealing for in-
dustry applications: introduction and review. Reports on
Progress in Physics, 85(10):104001, 2022.

	Introduction
	Methodology
	Performance Comparison
	Conclusion

