
Complexity of Existential Positive First-Order Logic

Manuel Bodirsky, Miki Hermann, and Florian Richoux

LIX (CNRS, UMR 7161), École Polytechnique, 91128 Palaiseau, France.
{bodirsky, hermann, richoux}@lix.polytechnique.fr

Abstract. Let Γ be a (not necessarily finite) structure with a finite relational
signature. We prove that deciding whether a given existential positive sentence
holds in Γ is in LOGSPACE or complete for the class CSP(Γ)NP under
deterministic polynomial-time many-one reductions. Here, CSP(Γ)NP is the
class of problems that can be reduced to the constraint satisfaction problem of Γ
under non-deterministic polynomial-time many-one reductions.

Key words: Computational Complexity, Existential Positive First-Order Logic,
Constraint Satisfaction Problems

1 Introduction

We study the computational complexity of the following class of computational prob-
lems. Let Γ be a structure with finite or infinite domain and with a finite relational signa-
ture. The model-checking problem for existential positive first-order logic, parametrized
by Γ , is the following problem.

Problem: EXPOS(Γ)
Input: An existential positive first-order sentence Φ.
Question: Does Γ satisfy Φ?

A first-order sentence is existential positive if it does not contain universal quanti-
fiers and negation symbols, that is, if the only logical connectives are existential quanti-
fiers, disjunction, conjunction, and equality. The sentence does not need to be in prenex
normal form; however, every existential positive first-order sentence can be transformed
in an equivalent one in this form without an exponential blowup, thanks to the absence
of universal quantifiers and negation symbols.

The constraint satisfaction problem CSP(Γ) for Γ is defined similarly, but its input
consists of a primitive positive sentence, that is, a sentence without universal quanti-
fiers, negation, and disjunction. Constraint satisfaction problems frequently appear in
many areas of computer science, and have attracted a lot of attention, in particular in
combinatorics, artificial intelligence, and finite model theory; we refer to the recent
monograph with survey articles on this subject [7]. The class of constraint satisfaction
problems for infinite structures Gamma is a rich class of problems; it can be shown
that for every computational problem there exists a relational structure Gamma such
that CSP(Gamma) is equivalent to that problem under polynomial-time Turing reduc-
tions [1].

In this paper, we show that the complexity classification for existential positive
first-order sentences over infinite structures can be reduced to the complexity classi-
fication for constraint satisfaction problems. For finite structures Γ , our result implies
that EXPOS(Γ) is in LOGSPACE or NP-complete.

For finite Γ , the polynomial-time solvable cases of EXPOS(Γ) are precisely those
relational structures Γ with an element a where all relations in Γ contain the tuple
(a, . . . , a) composed only from the element a; in this case, EXPOS(Γ) is called a-valid.
Interestingly, this is no longer true for infinite structures Γ .

Consider the structure Γ := (N, 6=), which is clearly not a-valid. However,
EXPOS(Γ) can be reduced to the Boolean formula evaluation problem (which is known
to be in LOGSPACE) as follows: atomic formulas in Φ of the form x 6= y are replaced
by true, and atomic formulas of the form x 6= x are replaced by false. The resulting
Boolean formula is equivalent to true if and only if Φ is true in Γ .

A universal-algebraic study of the model-checking problem for finite structures Γ
and various other syntactic restrictions of first-order logic (for instance positive first-
order logic) can be found in [6].

2 Result

We write L ≤m L′ if there exists a deterministic polynomial-time many-one reduction
from L to L′.

Definition 1 (from [4]). A problem A is non-deterministic polynomial-time many-one
reducible to a problem B (A ≤NP B) iff there is a nondeterministic polynomial-time
Turing machine M such that x ∈ A if and only if there exists a y computed by M on
input x with y ∈ B. We denote by ANP the smallest class that contains A and is closed
under ≤NP.

Observe that ≤NP is transitive [4]. To state the complexity classification for exis-
tential positive first-order logic, we need the following concepts. Let Φ be an existential
positive τ -sentence for a finite relational signature τ . We construct a Boolean formula
FΓ (Φ) as follows. We first remove all existential quantifiers from Φ. Then we replace
each atomic formula in Φ of the form R(x1, . . . , xk) where R denotes the empty k-ary
relation over Γ by false. All other atomic formulas in Φ will be replaced by true. We
write FΓ (Φ) for the resulting Boolean formula. Note that if Φ is true in Γ then FΓ (Φ)
must be logically equivalent to true.

Definition 2. We call a relational structure Γ locally refutable if every existential pos-
itive sentence Φ is true in Γ if and only if the Boolean formula F (Φ) (as described
above) is logically equivalent to true.

In Section 3, we will show the following result.

Theorem 3. Let Γ be a structure with a finite relational signature τ . If Γ is locally
refutable then the problem EXPOS(Γ) to decide whether an existential positive sentence
is true in Γ is in LOGSPACE. If Γ is not locally refutable, then EXPOS(Γ) is complete
for the class CSP(Γ)NP under polynomial-time many-one reductions.

In particular, EXPOS(Γ) is in P or is NP-hard (under deterministic polynomial-time
many-one reductions). If Γ is finite, then EXPOS(Γ) is in P or NP-complete, because
finite domain constraint satisfaction problems are clearly in NP. The observation that
EXPOS(Γ) is in P or NP-complete has previously been made in [3] and independently
in [5]. However, our proof remains the same for finite domains and is simpler than
proofs in these previous works.

3 Proof

Before we prove Theorem 3, we start with the following simpler result.

Theorem 4. Let Γ be a structure with a finite relational signature τ . If Γ is locally
refutable, then the problem EXPOS(Γ) to decide whether an existential positive sen-
tence is true in Γ is in LOGSPACE. If Γ is not locally refutable, then EXPOS(Γ) is
NP-hard (under polynomial-time many-one reductions).

To show Theorem 4, we first prove the following lemma.

Lemma 5. If Γ is not locally refutable, then there are existential positive τ -formulasψ0

and ψ1 with the property that

– ψ0 and ψ1 define non-empty relations over Γ ;
– ψ0 ∧ ψ1 defines the empty relation over Γ .

Proof. Because Γ is not locally refutable, there is an unsatisfiable instance Φ of
EXPOS(Γ) such that the Boolean formula F (Φ) described above is logically equiva-
lent to true. Among all formulas with this property, let Φ be the one that is of minimal
length.

If Φ is of the form Φ1∨Φ2 then both Φ1 and Φ2 are unsatisfiable over Γ , and one of
the Boolean formulas FΓ (Φ1) or FΓ (Φ2) must be true; this contradicts the assumption
that Φ is minimal.

If Φ is of the form Φ1 ∧ Φ2, then both FΓ (Φ1) and FΓ (Φ2) are true. If both Φ1 and
Φ2 are satisfiable, then we are done, because we have found two satisfiable existential
positive formulas such that their conjunction is unsatisfiable. If Φ1 or Φ2 is unsatisfiable
over Γ , say Φi is unsatisfiable for i ∈ {1, 2}, then this contradicts the assumption that Φ
is minimal, because Φi is smaller than Φ, unsatisfiable over Γ , and FΓ (Φi) is true. If Φ
is of the form ∃x.Φ′ then this contradicts obviously the assumption that Φ is minimal.
Note that Φ cannot be atomic, because in this case Φ is either unsatisfiable or FΓ (Φ) is
true (but not both). ut

Proof of Theorem 4: If Γ is locally refutable, then EXPOS(Γ) can be reduced to the
positive Boolean formula evaluation problem, which is known to be LOGSPACE-
complete. We only have to construct from an existential positive τ -sentenceΦ a Boolean
formula F := F (Φ) as described before Definition 2. Clearly, this construction can be
performed with logarithmic work-space. We evaluate F , and reject if F is false, and
accept otherwise.

If Γ is not locally refutable, we show NP-hardness of EXPOS(Γ) by reduction
from 3-SAT. Let I be a 3-SAT instance. We construct an instance Φ of EXPOS(Γ) as
follows. Let ψ0 and ψ1 be the formulas from Lemma 5 (suppose they are d-ary). Let
v1, . . . , vn be the Boolean variables in I . For each vi we introduce d new variables x̄i =
x1
i , . . . , x

d
i . Let Φ be the instance of EXPOS(Γ) that contains the following conjuncts:

– For each 1 ≤ i ≤ n, the formula ψ0(x̄i) ∨ ψ1(x̄i)
– For each clause l1 ∨ l2 ∨ l3 in I , the formula ψi1(x̄j1)∨ψi2(x̄j2)∨ψi3(x̄j3) where
ip = 0 if lp equals ¬xjp and ip = 1 if lp equals xjp , for all p ∈ {1, 2, 3}.

It is clear that Φ can be computed in deterministic polynomial time from I , and that Φ
is true in Γ if and only if I is satisfiable. ut

Note that, applied to finite domain constraint languages Γ , we obtain again the
dichotomy from [3] and [5].

Proof of Theorem 3: If Γ is locally refutable then the statement has been shown in The-
orem 4. Suppose that Γ is not locally refutable. To show that EXPOS(Γ) is contained
in CSP(Γ)NP, we construct a non-deterministic Turing machine T which takes as in-
put an instance Φ of EXPOS(Γ), and which outputs an instance T (Φ) of CSP(Γ) as
follows.

On input Φ the machine T proceeds recursively as follows:

– if Φ is of the form ∃x.ϕ then return ∃x.T (ϕ);
– if Φ is of the form ϕ1 ∧ ϕ2 then return T (ϕ1) ∧ T (ϕ2);
– if Φ is of the form ϕ1∨ϕ2 then non-deterministically return either T (ϕ1) or T (ϕ2);
– if Φ is of the form R(x1, . . . , xk) then return R(x1, . . . , xk).

The output of T can be viewed as an instance of CSP(Γ), since it can be transformed
to a primitive positive τ -sentence (by moving all existential quantifiers to the front). It
is clear that T has polynomial running time, and that Φ is true in Γ if and only if there
exists a computation of T on Φ that computes a sentence that is true in Γ .

We now show that EXPOS(Γ) is hard for CSP(Γ)NP under ≤m-reductions.
Let L be a problem with a non-deterministic polynomial-time many-one reduction to
CSP(Γ), and let M be the non-deterministic Turing machine that computes the reduc-
tion. We have to construct a deterministic Turing machine M ′ that computes for any
input string s in polynomial time in |s| an instance Φ of EXPOS(Γ) such that Φ is true
in Γ if and only if there exists a computation of M on s that computes a satisfiable
instance of CSP(Γ).

Say that the running time of M on s is in O(|s|e) for a constant e. Hence, there
are constants s0 and c such that for |s| > s0 the running time of M and hence also
the number of constraints in the input instance of CSP(Γ) produced by the reduction
is bounded by t := c|s|e. The non-deterministic computation of M can be viewed as a
deterministic computation with access to non-deterministic advice bits as shown in [2].
We also know that for |s| > s0, the machine M can access at most t non-deterministic
bits. If w is a sufficiently long bit-string, we write Mw for the deterministic Turing
machine obtained from M by using the bits in w as the non-deterministic bits, and
Mw(s) for the instance of CSP(Γ) computed by Mw on input s.

If |s| ≤ s0, then M ′ returns ∃x.(x = x) if there is an w ∈ {0, 1}∗ such that Mw(s)
is a satisfiable instance of CSP(Γ), and M ′ returns ∃x̄.ψ0(x̄) ∧ ψ1(x̄) otherwise (i.e.,
it returns a false instance of EXPOS(Γ); ψ0 and ψ1 are defined in Lemma 5). Since s0
is a fixed finite value, M ′ can perform these computations in constant time.

It is convenient to assume that Γ has just a single relation R (we can always find
a CSP which is deterministic polynomial-time equivalent and where the template is of
this form1). Let l be the arity ofR. Then instances of CSP(Γ) with variables x1, . . . , xn
can be encoded as sequences of numbers that are represented by binary strings of length
dlog te as follows: The i-th number m in this sequence indicates that the (((i− 1) mod
l) + 1)-st variable in the (((i− 1) div l) + 1)-st constraint is xm.

For |s| > s0, the sentence Φ computed by M ′ has the form

∃x1
1, . . . , x

t
l . (

t∧
i=1

R(xi1, . . . , x
i
l) ∧ Ψ) . (1)

where Ψ is an EXPOS(Γ) formula defined below.
The idea is that any instance of CSP(Γ) computed by the machine M can be ob-

tained by contracting variables in
∧
i≤tR(xi1, . . . , x

i
l). The way this is done is con-

trolled by a Boolean formula that can be computed from the input s ofM in polynomial
time. The Boolean formula also contains Boolean variables for the non-deterministic
advice bits of M . Each Boolean variable v in the formula is simulated by a d-tuple
x̄v of variables in Ψ that is forced to satisfy ψ0(x̄v) ∨ ψ1(x̄v) (ψ0 and ψ1 are defined
in Lemma 5), similarly as in the proof of Theorem 4, such that v = 0 corresponds to
falsity of ψ0(x̄v), and v = 1 corresponds to truth of ψ1(x̄v) in Γ . The formula Φ will
be such that there exists a computation of M that produces a satisfiable instance I of
CSP(Γ) if and only if there exists an assignment to x1

1, . . . , x
t
l that satisfies Ψ and such

that
∧
i≤tR(xi1, . . . , x

i
l) is equivalent to I .

We now provide the details of the definition of the machineM ′ that computes Φ. We
use a construction from the proof of Cook’s theorem given in [2]. In this proof, a com-
putation of a non-deterministic Turing machine T accepting a language L is encoded by
Boolean variables that represent the state and the position of the read-write head of T
at time r, and the content of the tape at position j at time r. The tape content at time 0
consists of the input x, written at positions 1 through n, and the non-deterministic ad-
vice bit string w, written at positions −1 through −|w|. The proof in [2] specifies a
deterministic polynomial-time computable transformation fL that computes for a given
string s a SAT instance fL(s) such that there is an accepting computation of T on s if
and only if there is a satisfying truth assignment for fL(s).

In our case, the machine M computes a reduction and thus computes an output
string. Recall our binary representation of instances of the CSP: M writes on the output
tape a sequence of numbers represented by binary strings of length dlog te. It is straight-
forward to modify the transformation fL given in the proof of Theorem 2.1 in [2] to

1 If Γ = (D;R1, . . . , Rn) where Ri has arity ri and is not empty, then CSP(Γ) is equiva-
lent to CSP(D;R1 × · · · × Rn) where R1 × · · · × Rn is the

Pn
i=1 ri-ary relation defined

as the Cartesian product of the relations R1, . . . , Rn. Similarly, EXPOS(Γ) is equivalent to
EXPOS(D;R1 × · · · ×Rn).

obtain for all positive integers a, a′, b, b′, c, c′ where a, a′ ≤ t, b, b′ ≤ l, c, c′ ≤ dlog te
a deterministic polynomial-time transformation ga,a′,b,b′,c,c′ that computes for a given
string s a SAT instance ga,a′,b,b′,c,c′(s) with distinguished variables z1, . . . , zt (for the
non-deterministic bits in the computation of M) such that the following are equivalent:

– ga,a′,b,b′,c,c′(s) has a satisfying assignment where zi is set to wi ∈ {0, 1} for 1 ≤
i ≤ t;

– the c-th bit in the b-th variable of the a-th constraint in Mw(s) equals the c′-th bit
in the b′-th variable of the a′-th constraint in Mw(s).

We use the transformations ga,a′,b,b′,c,c′ to define M ′ as follows. The machine M ′

first computes the formulas ga,a′,b,b′,c,c′(s). For every Boolean variable v in these for-
mulas we introduce a new conjunct ϕ0(xv) ∨ ϕ1(xv) where xv is a d-tuple of fresh
variables. Then, every positive literal l = xj in the original conjuncts of the formula
is replaced by ϕ1(xj), and every negative literal l = ¬xj by ϕ0(xj). We then existen-
tially quantify over all variables except for xz1 , . . . , xzt

. Let ψa,a′,b,b′,c,c′(s) denote the
resulting existential positive formula. It is clear that the formula

∃xz1 , . . . , xzt
.
∧

a,a′,b,b′

(∧
c,c′

ψa,a′,b,b′,c,c′
)
→ xab = xa

′

b′


can be re-written in existential positive form Ψ without blow-up (we can replace im-
plications α → β by ¬α ∨ β, and then move the negation to the atomic level, where
we can remove it by exchanging the role of ϕ0 and ϕ1), and hence Ψ can be computed
by M ′ in polynomial time. The formula Ψ indeed has the properties required for the
formula Ψ mentioned in Equation 1. ut

References

1. M. Bodirsky and M. Grohe. Non-Dichotomies in Constraint Satisfaction Complexity. Pro-
ceedings 35th International Colloquium on Automata, Languages and Programming (ICALP
2008), Part II, Reykjavik (Iceland), 5126, 184–196, 2008.

2. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Co, 1979.

3. M. Hermann and F. Richoux. On the Computational Complexity of Monotone Constraint
Satisfaction Problems. Proceedings 3rd Annual Workshop on Algorithms and Computation
(WALCOM 2009), Kolkata (India), 2009.

4. R. E. Ladner, N. A. Lynch and A. L. Selman. A Comparison of Polynomial-Time Reducibil-
ities. Theoretical Computer Science, 1(2), 103–124, 1975.

5. B. Martin. Dichotomies and Duality in First-order Model Checking Problems. CoRR
abs/cs/0609022, 2006.

6. B. Martin. First-Order Model Checking Problems Parameterized by the Model. Proceedings
4th Conference on Computability in Europe (CiE 2008), Athens (Greece), 417–427, 2008.

7. H. Vollmer. Complexity of Constraints (A collection of survey articles). Springer, LNCS
5250, 2008.

